UA-NJ Air Conditioning & Refrigeration Division Training Curriculum

1st Year

Basic Mathematics

Subjects

Using formulas as an expression of logical sequence in solving problems.

Measuring using a ruler

Change of State formulas and application

Square footage use and explanation

Cubic footage determination

Sensible heat formulas

Basic electric formulas and terms

Substitution of symbols and numbers

Fraction theory

Reading p/t charts and Temperature / BTU graph

Basic Refrigeration & A/C I

Subjects

Basic Physics

Heat, Temperature & Heat Flow

Matter & Energy

Measuring Temperature / Temperature Scales

Atmospheric Pressure

Refrigeration Cycles

Moving Heat

Vapor-compression cycle

Refrigerants

Evaporation / condensation

Vapor-compression refrigeration cycle

Four major components

Pressure / temperature relationship

Typical refrigeration systems

Types of compressors

Types of metering devices

Other components / accessories of refrigeration cycle

Tools used in refrigeration work

UA Tool List

Other Hand Tools & Specialty Tools

Schrader core remover, pinch-off, benders, special drivers

Introduction to Servicing AC / Refrigeration systems

Using gauges & p/t chart

Using leak detecting tools

Using evacuation tools

1st Year continued

Basic Electricity I

Subjects

Electrical Energy

Introduction / Safety

Electrical Charges & Magnetism

Basic Electrical Terms

Conductors / Insulators

Measuring Electricity

Electrical Quantities

Voltage / Current / Resistance

Types of Electricity

Static / DC / AC

Electrical Circuits

Series / Parallel

Using Electrical Meter

Voltage / Amperage / Resistance

Principles of Electricity

Ohm's Law

Kirchhoff's Law

Electrical Power (Watts)

Simple Control Circuit

Loads & Switches

Low voltage control components / Relays

Basic Electrical Drawings

Applied Electrical Circuits

Safety PPE

Basic Meter Usage

Soldering & Brazing

Subjects

Safety Fundamentals

PPE, fire prevention, ventilation, workstation setup

Copper Tube Basics

Types (K, L, M, Refrigeration), cutting, reaming, cleaning, and preparation

Soldering & Brazing Equipment

Torches, hoses, tips, regulators, flame types (neutral, carburizing, oxidizing)

Air-acetylene Systems

Setup, operation, safe handling, and best uses

Oxy-acetylene Systems

Setup, operation, flame adjustment, and applications

Acetylene & Oxygen Cylinder Safety

Storage, transport, regulator use, flashback arrestors, check valves

Filler Alloys & Fluxes

Types of Solders, silver-bearing alloys, flux functions, application, and cleanup

Soldering copper tube

Joint preparation, fluxing, heating, solder flow by capillary action

Brazing copper tube

Tube prep, nitrogen purging, heating sequence, filler rod feeding, joint finishing

Nitrogen use & Regulator Safety

Purging, pressure control, cylinder handling, flow rates

Pressure Testing for Leaks

Test equipment, soap solution, electronic detection, safe pressures, documenting

Health & Safety

Subjects

Complete Job Safety & Health UA Manual - The recognition of job safety & health hazards, and a Certification in OSHA 30. Also included is important information concerning the employer's responsibilities in accident prevention, along with an employee's rights and responsibilities.

UA Heritage

Subjects

History of the United Association

2nd Year

EPA 608 Universal Certification

Subjects

EPA 608 regulations and environmental responsibility
Overview of ozone depletion and global warming impacts
Understanding refrigerant types and classifications
Safe handling and storage of refrigerants
Leak detection methods and repair requirements
Recovery, recycling, and reclaiming refrigerants
Charging and reclaiming procedures for all systems
System components and operation for small and large appliances
Core universal certification preparation
Type I small appliances certification
Type II high pressure and medium pressure systems certification
Type III low pressure systems certification

Electric II – Motors & Wiring Diagrams

Subjects

Electrical Safety
Basic Electricity Review
Electrical Wiring Diagram Types
Parts of the Wiring Diagrams
Use of Diagrams
Graphical Symbols
ANSI Standard Diagrams
Reading a Schematic Diagram
Manufacturer's Electrical Diagrams
Single Phase Motor Types
Capacitors / Why they're used
PSC
Capacitor Start / Run
Motor Relays
Current Relay

Power Supplies
Delta/WYE Connections
ECM – Basic
Control Relays & Contactors
Circuit Loads & Terminology
Operating & Safety Controls

Potential Relay

Voltage Unbalance

Three Phase Motors

2nd Year continued

Refrigeration & A/C II

Subjects

Complete vapor compression cycle and its components

Recovery recycle and reclaim of refrigerants

Evacuation and dehydrating practical practices

Use of paper and digital PT apps

Bubble point, dew point, fractionation and glide

Proper use of analog and digital tools

Scales tare net and gross cylinder weights

Enthalpy diagrams

Compression ratios

System components including compressors, evaporators, condensers and metering

devices

Specialized study of the five different types of vapor compression methods

Loading and unloading compressor logic and industry techniques

Compound compression: racks and compressors

Refrigeration oil types and application

Safety practices and environmental compliance in refrigeration and air conditioning

A2L A3 Refrigerants Awareness

Subjects

Introduction to low Global Warming Potential GWP refrigerants

Overview of A2L mildly flammable refrigerants

Overview of A3 highly flammable refrigerants

Basic physical and chemical characteristics of A2L and A3 refrigerants

Understanding flammability risks and associated hazards

Proper handling, storage procedures for flammable refrigerants

Regulatory guidelines and safety standards for A2L and A3 refrigerants

Personal protective equipment PPE requirements

Leak detection and emergency response awareness

Safe installation and service practices

Increased safety measures compared to non-flammable refrigerants

Summary of best practices for working safely with flammable refrigerants

<u>Customer Relations – Based on MSCA Program</u>

Subjects

Customer Relations
Appearance
Work Habits
Service Procedures
Listening to the Customer
Explaining Repairs
Do's & Don'ts

3rd Year

Control Theory

Subjects

General Control Theory
Basic types of control systems
Definitions of Terms
Control Action
On / Off Control

Conventional Thermostats Heat Anticipation

Reset control
Energy sources
Mode of control
Controllers
Dual input controls

Servicing & Electrical Troubleshooting

Subjects

Electrical Safety
Reading & Interpreting Wiring Schematics
Sequence of Operation
Servicing Procedures
Troubleshooting Electrical Circuits
Problem Solving

New Technologies

Subjects

Fundamental Mechanical

3rd Year continued

Refrigeration and A/C III

Subjects

Liquid metering devices, including fixed orifice, cap tube, piston, TXV, TEV, EEV, and automatic valves

Total superheat and subcooling charging methods

TXV and TEV operating forces, bulb charges, and nomenclature

OEM manufacturer training resources from Parker, Sporlan, Alco, Danfoss, and others

Application of powerheads and field-assembled Q and BQE body kits

Electronic expansion valves and head pressure controls

Low ambient control logics and types

Flooded condenser winter and summer charging calculations

Specialized refrigeration differential valve terminology and applications including ORI,

ORD, ORO, CPR, EPR, SORIT, ORIT, and LLS valves operation

AC Hot gas bypass and refrigeration hot gas defrost

Compound compressor and rack systems

Refrigeration piping practices

Year-appropriate troubleshooting lab stations

Crane & Rigging

Subjects

Safety Knots & Hitches Slings, Sizes, & Selection Shackles & Pins Crane Signals Crane Awareness

4th Year

Hydronics

Subjects

Types of Systems Definition of Terms

System pressures & relief valves

Filling a system

Air in water / expansion tanks

System Accessories

PRV valve / Flo-control valve

Piping

Pumps & GPM calculations

Properties of Natural Gas

Combustion & Flame characteristics

Natural Gas Burners

Metering Natural Gas & Gas pressures

Gas Venting

Gas pipe pressure testing

Pipe sizing

Primary/Secondary Loop System

Gas Line Sizing

Combustion, Electrical, Gas, and Water Side Safety

Electro Mechanical Principles (AC&R)

Subjects

Transformers / VA calculations

Motor Controllers

NEMA Ratings

Thermal OL Protection

Lockout / Reset Relays

Copeland Compressors

Terminal Plate Connections

Model Number ID

Electronic Motor Protectors

Robertshaw

Texas Instruments

Scroll Compressor

Discus Compressor

Carlyle (Carrier) Compressors

06D / 06E

Familiarization & Service

Capacity Control

Hot Gas

Oil Failure Controls

Copeland Sentronic Pump / Control

Control Settings

Typical Conditions AC&R

Troubleshooting AC&R

Manufacturers apps in the classroom & shop

Compressor Diagnosis

Defrost

Specialty Refrigeration Components

4th Year continued:

Oil Heat

Subjects

Combustion Theory Oil Supply Systems Piping Systems Fuel Pump Units Types of Burners High Pressure Gun Type Burners Oil Nozzles Staging of Combustion

Heat Pump Fundamentals

Subjects

Heat Pump Cycle

Review refrigeration cycle Refrigerant Flow reversal Piping Arrangement

Heat Pump Classification

Air to Air / Water to Air

Geothermal (Ground Source) Heat Pumps

Heat Pump Components

Coils / Compressors / Reversing Valve / Accessories

Reversing Valve

How it works / operation Parts of the Reversing Valve Troubleshooting Reversing Valve

Defrost Mode (Air Source HP's)

Defrost controls

Ground Source Heat Pumps

Types of Systems (Open or Closed Loop) Refrigeration Piping Arrangements

Domestic Hot Water Heating

Heat Pump Servicing Guidelines

Ductless Multi-Zone (Daikin & Mitsubishi)

Basic Wiring

5th Year

Advanced A/C Principals - Applied Systems

Subjects

Fundamentals & Properties of Air
Air Quality
Infiltration, Ventilation, & Virus
Calculating Outdoor Air
Human comfort
Air Distribution - Ducts & accessories
Economizers
History & Future of Controls
Automatic Controls – New Technologies
Computer Room Applications in HVAC
Heat Load Calculation (Basic)
Psychrometrics
Turbocor
C02
New ASHRAE Standards

Building Automation Fundamentals

Subjects

Digital direct control DOC systems and architecture

Understanding inputs and outputs in control systems

Low voltage polarity and wiring

Discrete binary and pulse width modulation PWM signals

Analog signals including VDC and mA standards

Difference between analog and digital signals

Control system logic and programming fundamentals

Networking communication protocols including BACnet LonWorks Mod bus and BACnet over IP

Field wiring practices and installation standards

Specialized tools such as tracers tone generators signal generators current sync loops and specialized meters

Active shop assignments and hands-on exposure

Developing point and equipment lists and a sequence of operations for system design Student presentations demonstrating project understanding and practical application

5th Year Continued

Chilled Water Systems

Subjects

Centrifugal Systems

Expansion Devices for Flooded Evaporators

Centrifugal Compressors

Screw Chiller Technology

Trane Helical Rotary

Carrier 30 GX, HX

Sequence of Operation & Checkout

VAV Box

Operation & Service

Understanding Electronic Controls

Variable Speed Controls

Air Flow System Layout

Chilled Water & Hot Water System Piping Layouts

Pump components and understanding pump detail

Terminal Unit Piping